
Prime
Protocol

by Ackee Blockchain

January 3, 2023

Contents
1. Document Revisions. 4

2. Overview . 5

2.1. Ackee Blockchain . 5

2.2. Audit Methodology . 5

2.3. Finding classification. 6

2.4. Review team. 8

2.5. Disclaimer . 8

3. Executive Summary. 9

Revision 1.0. 9

Revision 1.1 . 10

Revision 1.2 . 10

4. Summary of Findings . 11

5. Report revision 1.0 . 14

5.1. System Overview . 14

5.2. Trust Model . 20

M1: USP can return different exchange rate. 21

M2: Duplicate routes can cause loss of funds. 23

M3: Admin role can be renounced . 25

M4: Two-phase Admin role transfer . 27

M5: The setMidLayer function has insufficient validation. 29

M6: CRM missing validations . 30

M7: IRM setters are not performing any kind of data validation 32

M8: Unsafe transfers. 33

M9: Safe transfers are not checking for zero amounts. 35

M10: Duplicated balance values. 36

L1: Lack of project identifier for address validation. 38

Blockchain audits | Blockchain security assessment

2 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

L2: The liquidateCalculateSeizeTokens is not checking for a valid PToken

address. 40

W1: Treasury allows to receive native tokens without minting 42

W2: Hardcoded decimals for native tokens . 43

W3: Users can deposit but can not withdraw in a specific case 44

W4: Inconsistent Master State values can break the calculations 45

W5: Missing initializer modifier on the constructor . 46

W6: The setBorrowRate function does not emit events on different

branching . 47

W7: Usage of solc optimizer . 48

W8: Lockfile overwriting. 49

I1: Inconsistent naming convention . 50

I2: Misleading error for zero-address . 51

I3: Commented out code . 52

I4: Inconsistent usage of (pre/post)incrementation . 53

I5: Unnecessary load . 54

I6: LoanAgent code duplications . 55

I7: ECC variables should be constants . 58

I8: Abstract contracts naming . 59

I9: Documentation . 60

6. Report revision 1.1. 61

6.1. System Overview . 61

7. Report revision 1.2 . 62

Appendix A: How to cite . 63

Appendix B: Glossary of terms . 64

Blockchain audits | Blockchain security assessment

3 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

1. Document Revisions
1.0 Final report November 25, 2022

1.1 Fix-review December 7, 2022

1.2 Fix-review January 3, 2023

Blockchain audits | Blockchain security assessment

4 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specializing in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run free

certification courses School of Solana, Summer School of Solidity and teach

at the Czech Technical University in Prague. Ackee Blockchain is backed by

the largest VC fund focused on blockchain and DeFi in Europe, Rockaway X.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Woke is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

5 of 65

https://github.com/ackee-blockchain
https://ackeeblockchain.com/school-of-solana
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rockawayx.com/
https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com
https://ackeeblockchain.com

2.3. Finding classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low -

Impact

High Critical High Medium -

Medium High Medium Medium -

Low Medium Medium Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

Blockchain audits | Blockchain security assessment

6 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration (such as deployment scripts, compiler configuration, use of

multi-signature wallets for owners, etc.), but could be a security

vulnerability if these were to change slightly. If we haven’t found a way to

exploit the issue given the time constraints, it might be marked as a

"Warning" or higher, based on our best estimate of whether it is currently

exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

7 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

2.4. Review team

Member’s Name Position

Jan Kalivoda Lead Auditor

Stepan Sonsky Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

8 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

3. Executive Summary
Prime Protocol allows users to deposit assets on any supported chain and

receive another asset loan backed by their entire portfolio of assets.

Revision 1.0
Prime engaged Ackee Blockchain to perform a security review of the Prime

protocol with a total time donation of 52 engineering days in a period

between September 26 and November 18, 2022 and the lead auditor was Jan

Kalivoda.

The audit has been performed on the commit 7a602f0.

The scope was full-repository excluding the following directories:

• contracts/util/dependency

• contracts/satellite/rewardsController

• contracts/master/staking

We began our review by using static analysis tools, namely Woke and Slither.

Then we took a deep dive into the codebase and continued with hacking on a

local deployment. Lastly, we were testing several scenarios with Brownie

framework. During the review, we paid special attention to:

• ensuring the arithmetic of the system is correct,

• ensuring the correctness of the upgradeability mechanism,

• validating the correctness of data storing in the ECC contract and

message resending,

• checking the multi-chain communication and possible chain id decoupling,

• checking the possibility of USP stablecoin misuse to hack the protocol,

Blockchain audits | Blockchain security assessment

9 of 65

https://github.com/Ackee-Blockchain/woke
https://github.com/crytic/slither
https://eth-brownie.readthedocs.io/en/stable/
https://ackeeblockchain.com
https://ackeeblockchain.com

• detecting possible reentrancies in the code,

• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Our review resulted in 29 findings, ranging from Info to Medium severity.

In general, the project is solid. However, it is heavily dependent on the

administrators (see Trust Model).

Ackee Blockchain recommends Prime:

• reconsider the usage of the anti-collision mechanism in the ECC contract,

• add more NatSpec comments to the code,

• address all other reported issues.

See Revision 1.0 for the system overview of the codebase.

Revision 1.1
The fix review was done on November 30, 2022, on the given commit: 5adaf0b.

See Revision 1.1 for the review of the updated codebase and additional

information we consider essential for the current scope.

Revision 1.2
The fix review was done on January 3, 2023, on the given commit: 4264302,

and the client’s feedback for Revision 1.1. See Revision 1.2 for additional info.

The status of all reported issues has been updated and can be seen in the

findings table.

Blockchain audits | Blockchain security assessment

10 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

4. Summary of Findings
The following table summarizes the findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• a Description,

• an Exploit scenario,

• a Recommendation and if applicable

• a Solution.

There might often be multiple ways to solve or alleviate the issue, with

varying requirements regarding the necessary changes to the codebase. In

that case, we will try to enumerate them all, clarifying which solves the

underlying issue better (albeit possibly only with architectural changes) than

others.

Severity Reported Status

M1: USP can return different

exchange rate

Medium 1.0 Fixed

M2: Duplicate routes can

cause loss of funds

Medium 1.0 Fixed

M3: Admin role can be

renounced

Medium 1.0 Fixed

M4: Two-phase Admin role

transfer

Medium 1.0 Fixed

M5: The setMidLayer

function has insufficient

validation

Medium 1.0 Fixed

M6: CRM missing validations Medium 1.0 Fixed

Blockchain audits | Blockchain security assessment

11 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Severity Reported Status

M7: IRM setters are not

performing any kind of data

validation

Medium 1.0 Fixed

M8: Unsafe transfers Medium 1.0 Fixed

M9: Safe transfers are not

checking for zero amounts

Medium 1.0 Fixed

M10: Duplicated balance

values

Medium 1.0 Fixed

L1: Lack of project identifier

for address validation

Low 1.0 Partially

fixed

L2: The
liquidateCalculateSeizeTok

ens is not checking for a

valid PToken address

Low 1.0 Acknowled

ged

W1: Treasury allows to

receive native tokens

without minting

Warning 1.0 Fixed

W2: Hardcoded decimals for

native tokens

Warning 1.0 Fixed

W3: Users can deposit but

can not withdraw in a

specific case

Warning 1.0 Fixed

W4: Inconsistent Master

State values can break the

calculations

Warning 1.0 Acknowled

ged

W5: Missing initializer

modifier on the constructor

Warning 1.0 Fixed

Blockchain audits | Blockchain security assessment

12 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Severity Reported Status

W6: The setBorrowRate

function does not emit

events on different

branching

Warning 1.0 Fixed

W7: Usage of solc optimizer
Warning 1.0 Acknowled

ged

W8: Lockfile overwriting Warning 1.0 Fixed

I1: Inconsistent naming

convention

Info 1.0 Acknowled

ged

I2: Misleading error for zero-

address

Info 1.0 Acknowled

ged

I3: Commented out code
Info 1.0 Acknowled

ged

I4: Inconsistent usage of

(pre/post)incrementation

Info 1.0 Fixed

I5: Unnecessary load Info 1.0 Fixed

I6: LoanAgent code

duplications

Info 1.0 Fixed

I7: ECC variables should be

constants

Info 1.0 Fixed

I8: Abstract contracts

naming

Info 1.0 Acknowled

ged

I9: Documentation
Info 1.0 Acknowled

ged

Table 2. Table of Findings

Blockchain audits | Blockchain security assessment

13 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

5. Report revision 1.0

5.1. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

Terms

Terms we find important for better understanding are described in the

following sections.

Master chain

Master chain is the chain where MasterState is settled. It maintains all the

information from its satellite chains and approves users' actions.

Satellite chain

Satellite chain is the chain where users interact with the protocol (except for

liquidations). Actions from satellite chains are routed to the master chain for

approvals.

Message-passing architecture

For message passing in the specified commit is used only Axelar. More

information can be viewed in the Contracts and Actors sections.

Architecture

Prime Protocol allows users to deposit assets on any supported chain

(Satellite chains) and receive a loan backed by their entire portfolio of assets.

The decision if the user is allowed to borrow is performed on the Master

chain. Communication between the Master chain and the Satellite chains is

Blockchain audits | Blockchain security assessment

14 of 65

https://axelar.network/
https://ackeeblockchain.com
https://ackeeblockchain.com

performed via message passing.

Figure 1. Simplified architecture of Prime Protocol

Contracts

Contracts we find important for better understanding are described in the

following sections.

MasterState

MasterState is the central point of Prime Protocol and holds critical states

from all satellite chains. Also, it performs calculations to validate key actions

like borrowing, withdrawing collateral, or liquidations.

MasterState contract inherits from multiple contracts (most of the following

contracts have the same inheritance model) related to the Master state.

The only publicly-accessible state-changing functions are for liquidations.

Blockchain audits | Blockchain security assessment

15 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

The contract is upgradeable (inherits from UUPSUpgradeable).

MiddleLayer

The contract is settled on each chain for communication between the Prime

contracts and the message-passing architecture (eg. Axelar). The Axelar

Route contract triggers actions on the MiddleLayer that delegates these

actions to the relevant contracts.

The contract holds a mapping of authorized contracts and routes. Authorized

contracts can call the msend function that forwards the message to the

chosen route, and routes can call the mreceive function that forwards the

message to Prime contracts based on the passed selector.

ECC

ECC (Error Correcting Contract) implements the logic for a store of data. It

uses 8 bytes long blocks where are stored all the data needed for message

passing. It implements its own logic for eliminating collisions in storage. Also,

the contract allows pre-registration of messages (preRegMsg) that can be later

processed (e.g., with resendMessage).

AxelarRoute

AxelarRoute can be one of many routes that can be used for communication

between MiddleLayer and Axelar Gateway.

PToken

PToken contract is deployed on satellite chains on a per-supported asset

basis. It allows users to add (deposit) and remove (withdraw) underlying assets

as collateral.

The contract is upgradeable (inherits from UUPSUpgradeable).

Blockchain audits | Blockchain security assessment

16 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

LoanAsset

LoanAsset is a multi-chain ERC-20 token that is used for loans. Users can

transfer tokens to another chain, and authorized addresses (Mint Authority)

can mint tokens.

LoanAgent

LoanAgent contract is used for the management of loans and is supposed to

be exactly one on each chain. LoanAgent allows users to borrow, repayBorrow,

and repayBorrowBehalf of another borrower.

The contract is upgradeable (inherits from UUPSUpgradeable).

Treasury

The contract holds reserve tokens and allows arbitrageurs to mint/burn loan

assets in exchange to trade assets. Its primary goal is to maintain the peg of

loan assets.

CRM

CRM (Collateral Ratio Model) calculates how much the user can borrow against

his deposits. Also, it utilizes a premium rate that is used for user

incentivization. Loan market premium is calculated based on ratioFloor and

ratioCeiling params.

The following image shows the loan market premium curve for ratioFloor =

97% and ratioCeiling = 103%.

Blockchain audits | Blockchain security assessment

17 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Figure 2. CRM.getLoanMarketPremium math model

IRM

IRM (Interest Rate Model) is used to increase or decrease the interest rate of

various supported loan assets based on different factors. Its main goal

should be to assist the stablecoins in maintaining the peg with the backing

assets.

PrimeOracle

The contract responsible for accessing prices from various feeds (like

ChainlinkFeedGetter).

SafeTransfers

The contract for safe transfers of tokens. It implements its own logic for

validating returned value from token transfers into the contract

(_doTransferIn) and out from the contract (_doTransferOut).

Actors

Blockchain audits | Blockchain security assessment

18 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Admin

Each component of the protocol has its own Admin. The Admin is responsible

for upgrading the contracts and setting the parameters, like adding new

routes, markets or updating ratios, modifying supported loan/trade assets in

Treasury, etc.

Middle Layer

Middle Layer is the only role that has access to modify MasterState in terms of

deposits, withdrawals and borrows.

On satellite chains it has permissions to approve borrows in LoanAgent or mint

from chain. In PToken contract the MiddleLayer can call completeWithdraw and

seize.

Axelar Route

Axelar Routes are contracts used to pass messages from MiddleLayer to

Axelar Gateway. Routes can access MiddleLayer’s mreceive function.

Axelar Gateway

Axelar Gateway accepts messages from Axelar Routes and passes them

through the Axelar message-passing architecture to other gateways on

different chains.

Mint Authority

Mint Authority is the only role that can mint and burn loan assets.

ECC Authority

ECC Authority is the only role that can register messages or flag them as

validated in ECC.

Blockchain audits | Blockchain security assessment

19 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

User

User can perform deposits, withdrawals, borrows, repays on satellite chains

and liquidations, and accrual of interest on the master state.

5.2. Trust Model
The protocol highly relies on the administrators of the contracts. If any of the

administrators is compromised, the protocol can be exploited critically in

various ways. Also, the admin could set critical protocol parameters wrong

and cause a lot of disastrous scenarios. Users have to trust the

administrators to not abuse their power.

Blockchain audits | Blockchain security assessment

20 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M1: USP can return different exchange rate

Medium severity issue

Impact: High Likelihood: Low

Target: PriceOracle.sol Type: Logic error

Listing 1. Excerpt from /contracts/master/oracle//PrimeOracle.sol#L82-

L93[PrimeOracle.getBorrowAssetExchangeRate]

82 if (loanMarketUnderlying == uspAddress) {
83 return _getAssetPrice(block.chainid, loanMarketUnderlying);
84 }
85
86 IPrimeOracleGetter primaryFeed =
 primaryFeeds[loanMarketUnderlyingChainId][loanMarketUnderlying];
87 if (address(primaryFeed) == address(0)) revert
 AddressExpected();
88 (ratio, decimals) =
 primaryFeed.getAssetRatio(loanMarketOverlying, loanMarketUnderlying,
 loanMarketUnderlyingChainId);
89 if (ratio == 0) {
90 IPrimeOracleGetter secondaryFeed =
 primaryFeeds[loanMarketUnderlyingChainId][loanMarketUnderlying];
91 if(address(secondaryFeed) == address(0)) revert
 AddressExpected();
92 (ratio, decimals) =
 secondaryFeed.getAssetRatio(loanMarketOverlying, loanMarketUnderlying,
 loanMarketUnderlyingChainId);
93 }

Description

When uspAddress is not set after deployment, then the variable is equal to

zero-address and thus getBorrowAssetExchangeRate, can return different

values than is expected because of USP-specific branching.

The getUnderlyingPriceBorrow is safe from this because it is checking for

Blockchain audits | Blockchain security assessment

21 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

decimals (on zero-address).

Exploit scenario

Admin forgets to set USP address. As a result, getBorrowAssetExchangeRate

returns a different value than is expected (also depending on the arguments

- zero-address/USP as an underlying).

For example, the user calls getBorrowAssetExchangeRate(someAsset, 1,

ZERO_ADDRESS):

• zero-address belongs to a native token,

• so the call returns price for the native token,

• then uspAddress is set to USP address,

• and the next same call returns the asset ratio between someAsset and the

native token.

Recommendation

Ensure that uspAddress is not set to zero-address. For example initialize it in

the constructor with address(1).

Solution (Revision 1.1)

The function getUnderlyingPriceBorrow is now reverting if uspAddress is set to

zero-address.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

22 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M2: Duplicate routes can cause loss of funds

Medium severity issue

Impact: High Likelihood: Low

Target: MiddleLayer.sol Type: Logic error

Listing 2. Excerpt from

/contracts/middleLayer/MiddleLayerAdmin.sol#L70-

L74[MiddleLayerAdmin.addRoute]

70 function addRoute(IRoute _newRoute) external onlyAdmin() {
71 if(address(_newRoute) == address(0)) revert AddressExpected();
72 routes.push(_newRoute);
73 authRoutes[address(_newRoute)] = true;
74 }

Listing 3. Excerpt from /contracts/middleLayer/MiddleLayer.sol#L69-

L69[MiddleLayer.msend]

69 uint256 hash = uint256(keccak256(abi.encodePacked(_params,
 block.timestamp, _dstChainId)));

Description

It is possible to add multiple same routes via the addRoute function (see

Listing 2). This behavior can cause there will be a bigger chance that the

duplicated route will be chosen by the route picker (see Listing 3).

This issue becomes more several when the duplicated route is removed. The

route is disabled from the mapping of the authorized routes,

authRoutes[address(_fallbackAddressToRemove)] = false;

Blockchain audits | Blockchain security assessment

23 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

however, the route is still in the route list (because of duplication). When is

the msend function called, there is a chance (depending on the number of

routes and duplications) that the disabled route will be chosen. This can

cause a loss of funds.

Exploit scenario

Admin accidentally adds the same route again. Later he/she decides to

remove the route and didn’t notice the route was added twice. When the

msend function is called, the disabled route is chosen and the passed funds

are lost.

Recommendation

Prevent adding duplicated routes in the addRoute function.

Solution (Revision 1.1)

The addRoute function is modified to check if the route is already added. If so,

the function will revert.

if (authRoutes[address(_newRoute)]) revert RouteExists();

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

24 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M3: Admin role can be renounced

Medium severity issue

Impact: High Likelihood: Low

Target: **/* Type: Data validation

Listing 4. Excerpt from /contracts/ecc/ECC.sol#L81-L85[ECC.changeAdmin]

81 function changeAdmin(
82 address newAdmin
83) external onlyAdmin() {
84 admin = newAdmin;
85 }

Description

The changeAdmin function lacks zero-address validation (see Listing 4). Due to

that, the Admin role can be renounced by the current Admin.

Exploit scenario

The Admin accidentally calls changeAdmin with a zero-address. Then nobody

will ever be able to use elevated privileges.

Recommendation

Add a zero-address check to prevent this if it is not intended. Otherwise,

ignore this issue.

Solution (Revision 1.1)

The new contract AdminControl.sol has been added to the repository. It is a

base contract that can be used to implement the Admin role. For changing

the admin role, two-step process is used. First, the new admin is proposed.

Blockchain audits | Blockchain security assessment

25 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Then, the proposed admin has to accept the role. This system prevents the

accidental renouncement of the Admin role.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

26 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M4: Two-phase Admin role transfer

Medium severity issue

Impact: High Likelihood: Low

Target: **/* Type: Data validation

Description

Multiple contracts in the codebase use the owner pattern for access control

and also allow ownership transfer.

However, neither of the transfer functions has a robust verification

mechanism for the new proposed owner. If a wrong owner address is passed

to them, neither can recover from the error.

Thus passing a wrong address can lead to irrecoverable mistakes.

Exploit scenario

The current owner Alice wants to transfer the ownership to Bob. Alice calls

the changeAdmin function but supplies the wrong address by mistake. As a

result, the ownership will be passed to the wrong address.

Recommendation

One of the common and safer approaches to ownership transfer is to use a

two-step transfer process.

Suppose Alice wants to transfer the ownership to Bob. The two-step process

would have the following steps: Alice proposes a new owner, namely Bob. This

proposal is saved to a variable candidate. Bob, the candidate, calls the

acceptOwnership function. The function verifies that the caller is the new

proposed candidate, and if the verification passes, the function sets the

Blockchain audits | Blockchain security assessment

27 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

caller as the new owner. If Alice proposes a wrong candidate, she can change

it. However, it can happen, though with a very low probability that the wrong

candidate is malicious (most often it would be a dead address). An

authentication mechanism can be employed to prevent the malicious

candidate from accepting the ownership.

Solution (Revision 1.1)

For changing the admin role, the two-step process is used. The logic is

implemented in the new contract AdminControl.sol

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

28 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M5: The setMidLayer function has insufficient
validation

Medium severity issue

Impact: High Likelihood: Low

Target: ECC.sol Type: Data validation

Description

The setMidLayer function allows passing an arbitrary address.

Exploit scenario

By accident, an incorrect newMiddleLayer is passed to the function. Instead of

reverting, the call succeeds.

Recommendation

Add more stringent data validation for newMiddleLayer. At the very least this

would include a zero-address check. Ideally, we recommend defining a getter

such as contractId() that would return a hash of an identifier unique to the

(project, contract) tuple[1]. This will ensure the call reverts for most incorrectly

passed values (see L1: Lack of project identifier for address validation for

more information).

Solution (Revision 1.1)

The setMidLayer function now checks the unique ID identifier of

newMiddleLayer by the added isMiddleLayer modifier.

Blockchain audits | Blockchain security assessment

29 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M6: CRM missing validations

Medium severity issue

Impact: High Likelihood: Low

Target: CRMAdmin.sol Type: Data validation

Description

CRMStorage.sol values ratioCeiling and ratioFloor are validated in the CRM.sol

constructor but not in CRMAdmin.sol setters.

Listing 5. Excerpt from /contracts/master/crm//CRM.sol#L15-

L18[CRMAdmin.constructor]

15 if (
16 ratioCeilingParam > 103e16 /* 103% */ ||
17 ratioFloorParam < 97e16 /* 97% */
18) revert ParamOutOfBounds();

Listing 6. Excerpt from /contracts/master/crm//CRMAdmin.sol#L8-

L13[CRMAdmin.setRatioCeiling]

8 function setRatioCeiling(
9 uint256 ratio
10) external onlyAdmin() returns (uint256) {
11 ratioCeiling = ratio;
12 return ratioCeiling;
13 }

Listing 7. Excerpt from /contracts/master/crm//CRMAdmin.sol#L15-

L20[CRMAdmin.setRatioFloor]

15 function setRatioFloor(
16 uint256 ratio
17) external onlyAdmin() returns (uint256) {

Blockchain audits | Blockchain security assessment

30 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

18 ratioFloor = ratio;
19 return ratioFloor;
20 }

Exploit scenario

Admin changes these values by intent (or by mistake), which leads to loan

market premium manipulations and misbehaviors.

Recommendation

Add ratioCeiling and ratioFloor validations into setters in CRMAdmin.sol.

Solution (Revision 1.1)

Two conditions have been added to setRatioCeiling and setRatioFloor

functions in CRMAdmin.sol to validate the values.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

31 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M7: IRM setters are not performing any kind of
data validation

Medium severity issue

Impact: High Likelihood: Low

Target: IRM.sol Type: Data validation

Description

The values for the IRM that are passed in the constructor are validated for

non-zero values, however, the setters allow to set the values to zero.

Exploit scenario

Admin changes these values by intent (or by mistake) and critically affects

the protocol.

Recommendation

Implement data validation for setters similarly as it is done in the constructor.

Solution (Revision 1.1)

The IRM.sol contract inherits the logic from the new contract IRMAdmin.sol

that has been added to the repository. The new contract contains the logic

for the setters with zero address checks.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

32 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M8: Unsafe transfers

Medium severity issue

Impact: High Likelihood: Low

Target: Treasury.sol Type: Data validation

Listing 8. Excerpt from /contracts/satellite/treasury/Treasury.sol#L38-

L38[Treasury.mintLoanAsset]

38 if (tradeAsset != address(0) &&
 !_tradeAsset.transferFrom(msg.sender, address(this), tradeAmount))
 revert TransferFailed(msg.sender, address(this));

Listing 9. Excerpt from /contracts/satellite/treasury/Treasury.sol#L75-

L75[Treasury.burnLoanAsset]

75 else if (!_tradeAsset.transfer(msg.sender, tradeAmount)) revert
 TransferFailed(msg.sender, address(this));

Description

The Treasury.sol inherits from SafeTransfers contract but does not use safe

transfer methods on ERC-20 assets.

Exploit scenario

A non-standard (or malicious) token is used in the contract. It causes

successful transfers without transferring the amount (or any other

unexpected behavior).

Recommendation

Use safe transfer functions from the SafeTransfers contract or use

OpenZeppelin SafeERC20 extension.

Blockchain audits | Blockchain security assessment

33 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Solution (Revision 1.1)

The logic has been moved to the contract TreasuryBase.sol with the

SafeTransfers inheritance, and the _doTransferIn and _doTransferOut

functions are used.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

34 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M9: Safe transfers are not checking for zero
amounts

Medium severity issue

Impact: Medium Likelihood: Medium

Target: SafeTransfers.sol Type: Data validation

Description

The doTransferOut function does not check for zero amounts. This can lead to

a transfer of zero tokens to a recipient address and not revert the

transaction.

Exploit scenario

Bob performs a liquidation and sends some amount of tokens into

MasterState. However, his reward is calculated as zero, and he loses his

deposited tokens.

Recommendation

Add a requirement for a non-zero amount to the _doTransferOut function.

Solution (Revision 1.1)

The zero amount check with a revert has been added to the functions.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

35 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

M10: Duplicated balance values

Medium severity issue

Impact: Medium Likelihood: Low

Target: Treasury.sol Type: Data validation

Listing 10. Excerpt from

/contracts/satellite/treasury/Treasury.sol#L37-

L37[Treasury.mintLoanAsset]

37 assetReserves[tradeAsset] += tradeAmount;

Listing 11. Excerpt from

/contracts/satellite/treasury/Treasury.sol#L71-

L71[Treasury.burnLoanAsset]

71 assetReserves[tradeAsset] = tradeAssetReserves - tradeAmount;

Description

Treasury.sol saves reserve assets' balances into the assetReserves mapping.

This can cause inconsistencies between assetReserves and the real token

balances in the contract in combination with unsafe transfers.

Exploit scenario

A malicious (non-standard) token performs a successful unsafe transfer

without transferring tokens, but the balance in the assetReserves gets

updated. Then withdraw and burnLoanAsset functions revert until these values

match.

Blockchain audits | Blockchain security assessment

36 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Listing 12. Excerpt from

/contracts/satellite/treasury/TreasuryAdmin.sol#L22-

L25[TreasuryAdmin.withdraw]

22 if (assetAddress == address(0)) _assetReserves = address(
 this).balance;
23 else _assetReserves = ERC20(assetAddress).balanceOf(address(
 this));
24
25 if (assetReserves[assetAddress] > _assetReserves) revert
 UnexpectedDelta();

Listing 13. Excerpt from

/contracts/satellite/treasury/Treasury.sol#L65-

L68[TreasuryAdmin.withdraw]

65 if (tradeAsset == address(0)) tradeAssetReserves = address(
 this).balance;
66 else tradeAssetReserves = _tradeAsset.balanceOf(address(this));
67
68 if (assetReserves[tradeAsset] > tradeAssetReserves) revert
 UnexpectedDelta();

Recommendation

Use SafeTransfers to avoid balance miscalculations.

Solution (Revision 1.1)

The functions from SafeTransfers are now used to transfer tokens.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

37 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

L1: Lack of project identifier for address
validation

Low severity issue

Impact: Low Likelihood: Low

Target: **/* Type: Data validation

Listing 14. Project Identifier

 bytes32 public constant CONTRACT_TYPE = keccak256("Prime - Middle
Layer");

Listing 15. Require statement for Data validation

 require(
 MiddleLayer(address_).CONTRACT_TYPE() == keccak256("Prime - Middle
Layer"),
 "Not a Middle Layer"
);

Description

Currently, the contracts in constructors and setter functions are at most

only checked against the zero address.

This approach can filter out the most basic mistakes, but it is not sufficient

to ensure more deep address validation. Further validation can be done by

using contract/project identifiers.

Such an identifier can be a constant string or a hash of a string (see Listing

14). Upon construction of a new contract that requires a Middle Layer

address a check of the identifier would be done (see Listing 15). The same

check can also be done anywhere else to ensure the correctness of the

Blockchain audits | Blockchain security assessment

38 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

passed address.

Exploit scenario

A contract deployer passes a wrong address to a constructor of one of the

Prime contracts. The address is not the zero address, but it is not a valid

address of a Prime contract either. As a result, a contract is deployed with

the wrong parameters.

Recommendation

It is recommended to use more stringent input data validation using the

project-wide identifier - not only in the upgrade function but also in the

constructors.

Such an approach might be not possible to implement when the contracts are

circularly dependent on each other. Yet, this approach should be

implemented where possible.

Solution (Revision 1.1)

The issue has been fixed only for the MiddleLayer. We recommend applying

unique ID validations also for other contracts. E.g., MasterState and LoanAgent

in the MiddleLayerAdmin.

Client’s comment: "Our deployment suite handles setting these addresses.

Our solidity contracts will always be deployed and upgraded using our

typescript infrastructure, and therefore this issue will not occur through our

standardized deployment/operations procedure."

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

39 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

L2: The liquidateCalculateSeizeTokens is not
checking for a valid PToken address

Low severity issue

Impact: Low Likelihood: Low

Target: MasterState.sol Type: Logic error

Description

Liquidations are not checking for a valid PToken address. This can lead to a

revert after reaching Middle Layer since then will be called the seize function

on the PToken address. If the seize function exists on the PToken address, it

will be called, otherwise it will revert.

This is an uncontrolled call to an arbitrary address. Fortunately, the only way

how to exploit that leads to loss of funds for the attacker. However, it is still a

vulnerability.

Exploit scenario

Bob creates own PToken with an arbitrary seize function. Bob then calls the

liquidateBorrow function with his PToken address as the parameter. The seize

function will be called, and Bob can execute his code. Transaction will not

revert and it will cause a loss of Bob’s funds since the PToken will not

transfer.

Recommendation

Add a check for a valid PToken address in the liquidateCalculateSeizeTokens

function.

Blockchain audits | Blockchain security assessment

40 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Solution (Revision 1.2)

Acknowledged. Client’s response:

" The auditors agree that this issue does not cause the protocol to lose

funds, and can only result in the lost funds of a user attempting to pass a

fraudulent PToken address. We do not think that an attacker losing their own

funds is an issue for the protocol. "

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

41 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W1: Treasury allows to receive native tokens
without minting

Impact: Warning Likelihood: N/A

Target: Treasury.sol Type: Logic error

Description

The contract has an empty payable receive function. Due to this, a native

token can be deposited without minting. This can be a problem in certain

scenarios. For example, the token could not be withdrawn if there will be

nothing to burn against.

Recommendation

Disable this feature if it is not intended for a production environment.

Solution (Revision 1.1)

The payable function receive has been removed.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

42 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W2: Hardcoded decimals for native tokens

Impact: Warning Likelihood: N/A

Target: Treasury.sol Type: Arithmetics

Description

Decimals for native tokens are hardcoded in the Treasury contract. This could

be potentially dangerous if any of the supported chains would differ from the

hardcoded value.

Recommendation

Be aware of this issue if you will be adding some unconventional EVM chain to

the protocol, or parametrize it.

Solution (Revision 1.1)

The native decimals are now set in the constructor of the TreasuryStorage

contract.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

43 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W3: Users can deposit but can not withdraw in a
specific case

Impact: Warning Likelihood: N/A

Target: AxelarRoute.sol Type: Uninitialized

values

Description

The AxelarRoute contract needs to set the executor to call the execute

function (onlyAX modifier). The executor should be an Axelar Gateway

address.

However, since the deposit process is not using the execute function on a

source chain, it allows a successful deposit. However, users can not further

withdraw their tokens if the executor is not set correctly.

This issue will not apply if the contract is on the same chain as the Master

State.

Recommendation

Do not allow only partial functionality (if the user is not well informed about

that). The AxelarRoute contract should not allow a deposit if the executor is

not set correctly.

Solution (Revision 1.1)

The zero address check for the variable executor has been added to the

constructor.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

44 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W4: Inconsistent Master State values can break
the calculations

Impact: Warning Likelihood: N/A

Target: MasterState.sol Type: Inconsistent

state

Description

This issue presents an essential struggle in cross-chain projects, how to

share critical values between different chains. The MasterState contract has

supportMarket function that assigns values for a PToken instance, but these

values can be set inconsistently against the real values that the PToken

contract has on its chain. As a result, the calculations would be incorrect.

Recommendation

Values can be assigned using message-passing architecture or with a specific

off-chain solution to ensure consistency (like deployment scripts).

Solution (Revision 1.1)

The client acknowledged the issue with the following comment: "Using our

deployment script, MasterState values are always verified and cannot be

inconsistent."

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

45 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W5: Missing initializer modifier on the
constructor

Impact: Warning Likelihood: N/A

Target: MasterState.sol Type: Data validation

Description

Since the protocol is using a well-known upgradeability implementation

(UUPSUpgradeable) the missing initializer can not affect the proxy contract.

However, an attacker still can claim himself as the admin of the

implementation contract and adjust the contract for his/her needs.

If the contract gets accidentally whitelisted or any other black swan event

happens, the attacker can use the implementation contract as the potential

attack vector for the protocol.

Recommendation

Add the initializer modifier on the constructor.

Solution (Revision 1.1)

The initializer modifier has been added to the constructor.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

46 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W6: The setBorrowRate function does not emit
events on different branching

Impact: Warning Likelihood: N/A

Target: IRM.sol Type: Events

Description

The setBorrowRate function emits the SetBorrowRate event only when ratio >

upperTargetRatio, otherwise it does not emit any event, but the

borrowInterestRatePerBlock variable is updated.

Recommendation

Emit events on every change of the borrowInterestRatePerBlock variable.

Solution (Revision 1.1)

The event is now correctly emitted at the end of the function.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

47 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

W7: Usage of solc optimizer

Impact: Warning Likelihood: N/A

Target: **/* Type: Compiler

configuration

Description

The project uses solc optimizer. Enabling solc optimizer may lead to

unexpected bugs.

The Solidity compiler was audited in November 2018, and the audit concluded

that the optimizer may not be safe.

Vulnerability scenario

A few months after deployment, a vulnerability is discovered in the optimizer.

As a result, it is possible to attack the protocol.

Recommendation

Until the solc optimizer undergoes more stringent security analysis, opt-out

using it. This will ensure the protocol is resilient to any existing bugs in the

optimizer.

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

48 of 65

https://docs.soliditylang.org/en/latest/bugs.html
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://ackeeblockchain.com
https://ackeeblockchain.com

W8: Lockfile overwriting

Impact: Warning Likelihood: N/A

Target: **/* Type: Dependency

management

Description

The npm i command overwrites the lockfile and that can cause undefined

behavior.

Exploit scenario

A developer will go step by step with README in the repository to deploy its

contracts. So, he/she will use npm i instead of npm ci (clean install) which will

overwrite the lockfile. Contracts are deployed on an untested version and due

to that contracts have different behavior than it’s intended.

Recommendation

Use npm ci instead of npm i to install dependencies.

Solution (Revision 1.1)

README has been updated.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

49 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I1: Inconsistent naming convention

Impact: Info Likelihood: N/A

Target: PTokenAdmin.sol Type: Code maturity

Description

The isdeprecated is not following the camel case naming convention.

Recommendation

Rename the function to isDeprecated.

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

50 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I2: Misleading error for zero-address

Impact: Info Likelihood: N/A

Target: **/* Type: Custom errors

Description

The codebase uses the AddressExpected() error in cases where the zero-

address is not allowed. This error is misleading since zero-address is still an

address. Therefore, it does not reflect precisely what is happening.

Recommendation

The error should be renamed to something more clear like

ZeroAddressNotAllowed().

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

51 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I3: Commented out code

Impact: Info Likelihood: N/A

Target: **/* Type: Code maturity

Description

The codebase contains commented-out code. This is a code smell and should

be removed.

Recommendation

Remove all unnecessary code before use in a production environment.

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

52 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I4: Inconsistent usage of
(pre/post)incrementation

Impact: Info Likelihood: N/A

Target: **/* Type: Gas optimization

Description

The contract uses (pre/post)incrementation inconsistently in its for-loops.

Pre-incrementation is the preferred way since it is cheaper for execution.

Recommendation

Replace post-incrementation with pre-incrementation in for-loops.

Solution (Revision 1.2)

Loops have been updated to pre-incrementation.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

53 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I5: Unnecessary load

Impact: Info Likelihood: N/A

Target: ECC.sol Type: Gas optimization

Listing 16. Excerpt from /contracts/ecc/ECC.sol#L261-

L267[ECC.resendMessage]

261 if (!found) {
262 bytes32 data;
263 assembly {
264 data := sload(ptr)
265 }
266 revert("rsm not found");
267 }

Description

In the Listing 16 is unnecessary sload to the local variable since in the next

line it will revert.

Recommendation

Remove the unnecessary code.

Solution (Revision 1.2)

Unused code has been removed.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

54 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I6: LoanAgent code duplications

Impact: Info Likelihood: N/A

Target: LoanAgent.sol Type: Best practices

Description

The LoanAgent contract contains duplicated code in repayBorrow and

repayBorrwBehalf functions.

Listing 17. Excerpt from

/contracts/satellite/loanAgent//LoanAgent.sol#L61-

L77[LoanAgent._sendRepay]

61 function repayBorrow(
62 address route,
63 address loanMarketAsset,
64 uint256 repayAmount
65) external payable virtual override returns (uint256) {
66 if (repayAmount == 0) revert ExpectedRepayAmount();
67 if (loanMarketAsset == address(0)) revert AddressExpected();
68 if (isFrozen[loanMarketAsset]) revert
 MarketIsFrozen(loanMarketAsset);
69
70 return _sendRepay(
71 msg.sender,
72 msg.sender,
73 route,
74 loanMarketAsset,
75 repayAmount
76);
77 }

Blockchain audits | Blockchain security assessment

55 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Listing 18. Excerpt from

/contracts/satellite/loanAgent//LoanAgent.sol#L85-

L102[LoanAgent.repayBorrowBehalf]

85 function repayBorrowBehalf(
86 address borrower,
87 address route,
88 address loanMarketAsset,
89 uint256 repayAmount
90) external payable virtual override returns (uint256) {
91 if (repayAmount == 0) revert ExpectedRepayAmount();
92 if (loanMarketAsset == address(0)) revert AddressExpected();
93 if (isFrozen[loanMarketAsset]) revert
 MarketIsFrozen(loanMarketAsset);
94
95 return _sendRepay(
96 msg.sender,
97 borrower,
98 route,
99 loanMarketAsset,
100 repayAmount
101);
102 }

Recommendation

Call the repayBorrowBehalf function from repayBorrow with msg.sender as a

borrower.

function repayBorrow(
 address route,
 address loanMarketAsset,
 uint256 repayAmount
) external payable virtual override returns (uint256) {
 repayBorrowBehalf(msg.sender, route, loanMarketAsset, repayAmount)
}

Blockchain audits | Blockchain security assessment

56 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Solution (Revision 1.2)

Code duplication has been resolved according to our recommendation.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

57 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I7: ECC variables should be constants

Impact: Info Likelihood: N/A

Target: ECC.sol Type: Best practices

Description

State variables maxSize, metadataSize, and usableSize are assigned only in

declarations. Should be contstants.

Listing 19. Excerpt from /contracts/ecc//ECC.sol#L64-L66[ECC.]

64 uint256 internal maxSize = 8;
65 uint256 internal metadataSize = 2;
66 uint256 internal usableSize = 6;

Recommendation

Refactor these variables to constants and adjust the assembly code that

uses it accordingly.

internal constant MAX_SIZE = 8;
uint256 internal constant METADATA_SIZE = 2;
uint256 internal constant USABLE_SIZE = 6;

Solution (Revision 1.2)

State variables have been transformed into constants, and the rest of the

code has been updated accordingly.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

58 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I8: Abstract contracts naming

Impact: Info Likelihood: N/A

Target: interfaces Type: Best practices

Description

interfaces folders sometimes contain abstract contracts with the I prefix

names. Even these fake-interface abstract contracts extend other abstract

contracts with state variables. This is very confusing and generally bad

practice.

E.g. the ILoanAgent inherits from LoanAgentStorage, which contains state

variables.

Listing 20. Excerpt from

/contracts/satellite/loanAgent/interfaces/ILoanAgent.sol#L7-

L7[ILoanAgent.]

7 abstract contract ILoanAgent is LoanAgentStorage {

Recommendation

Do not use I prefix for abstract contracts.

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

59 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

I9: Documentation

Impact: Info Likelihood: N/A

Target: **/* Type: Best practices

Description

NatSpec documentation is missing in the majority of contracts (usually

present only in interfaces). Some contracts with NatSpec documentation are

missing param descriptions. E.g., LoanAgent.sol is missing route param

description in all functions.

Recommendation

Cover all contracts and functions with NatSpec documentation. Missing or

sporadic code documentation does not look professional in open-source

projects.

Solution (Revision 1.2)

Acknowledged.

Go back to Findings Summary

[1] An example would be keccak256("Prime - Middle Layer")

Blockchain audits | Blockchain security assessment

60 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

6. Report revision 1.1

6.1. System Overview
The codebase has been updated as a response for some of the findings, and

extended by the following contracts:

• TreasuryBase.sol - main logic has been moved from Treasury.sol to this

contract.

• TreasuryEvents.sol - the new abstract contract.

• AdminControl - the new contract for managing the admin role.

• IRMAdmin.sol - setters have been moved from IRM.sol to this contract.

Trust model

The trust model has been updated in the following ways.

• Ownership transfer has been updated from single-step to two-step.

• Treasury contract now uses the contract ID validation.

Blockchain audits | Blockchain security assessment

61 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

7. Report revision 1.2
No significant changes in the code, only additional fixes according to

Revision 1.1 feedback.

Blockchain audits | Blockchain security assessment

62 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, Prime: Protocol, January 3, 2023.

Blockchain audits | Blockchain security assessment

63 of 65

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix B: Glossary of terms
The following terms might be used throughout the document:

Superclass/Ancestor of C

A contract that C inherits/derives from.

Subclass/Child of C

A contract that inherits/derives from C.

Syntactic contract

A Solidity contract. May have an inheritance chain, and may be deployed.

Deployed contract

An EVM account with non-zero code. If its source was written in Solidity, it

was created through at least one syntactic contract. If that contract had

superclasses (parents), it would be composed of multiple syntactic

contracts.

Init/initialization function

A non-constructor function that serves as an initializer. Often used in

upgradeable contracts.

External entrypoint

A public or external function.

Public/Publicly-accessible function/entrypoint

An external or public function that can be successfully executed by any

network account.

Mutating function

A non-view and non-pure function.

Blockchain audits | Blockchain security assessment

64 of 65

https://ackeeblockchain.com
https://ackeeblockchain.com

 Blockchain audit | Blockchain security assessment

 Thank You
 Ackee Blockchain a.s.

 Prague, Czech Republic

 hello@ackeeblockchain.com

 h�ps://discord.gg/z4KDUbuPxq

 1

https://ackeeblockchain.com/

	Prime: Protocol
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Finding classification
	2.4. Review team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1
	Revision 1.2

	4. Summary of Findings
	5. Report revision 1.0
	5.1. System Overview
	5.2. Trust Model
	M1: USP can return different exchange rate
	M2: Duplicate routes can cause loss of funds
	M3: Admin role can be renounced
	M4: Two-phase Admin role transfer
	M5: The setMidLayer function has insufficient validation
	M6: CRM missing validations
	M7: IRM setters are not performing any kind of data validation
	M8: Unsafe transfers
	M9: Safe transfers are not checking for zero amounts
	M10: Duplicated balance values
	L1: Lack of project identifier for address validation
	L2: The liquidateCalculateSeizeTokens is not checking for a valid PToken address
	W1: Treasury allows to receive native tokens without minting
	W2: Hardcoded decimals for native tokens
	W3: Users can deposit but can not withdraw in a specific case
	W4: Inconsistent Master State values can break the calculations
	W5: Missing initializer modifier on the constructor
	W6: The setBorrowRate function does not emit events on different branching
	W7: Usage of solc optimizer
	W8: Lockfile overwriting
	I1: Inconsistent naming convention
	I2: Misleading error for zero-address
	I3: Commented out code
	I4: Inconsistent usage of (pre/post)incrementation
	I5: Unnecessary load
	I6: LoanAgent code duplications
	I7: ECC variables should be constants
	I8: Abstract contracts naming
	I9: Documentation

	6. Report revision 1.1
	6.1. System Overview

	7. Report revision 1.2
	Appendix A: How to cite
	Appendix B: Glossary of terms

