
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Prime Prime Protocol

Veridise Inc.
October 21, 2022

▶ Prepared For:

Prime | Protocol
https://www.primeprotocol.xyz/

▶ Prepared By:

Jon Stephens
Bryan Tan
Kostas Ferles
Benjamin Mariano
Xiangan He

▶ Contact Us: contact@veridise.com

▶ Version History:

October 7, 2022 V1
October 21, 2022 V2

© 2022 Veridise Inc. All Rights Reserved.

https://www.primeprotocol.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-PRI-VUL-001: Incorrect rounding in ECC.roundPtr() 8
4.1.2 V-PRI-VUL-002: Users can manipulate Exchange Rate 10
4.1.3 V-PRI-VUL-003: masterDeposit() does not check result of _enterMarket() 12
4.1.4 V-PRI-VUL-004: Locked funds due to no-op fallback and receive 13
4.1.5 V-PRI-VUL-005: Can bypass onlySrc modifier if srcAddr is 0 14
4.1.6 V-PRI-VUL-006: No Restrictions on arbitrage amounts 15
4.1.7 V-PRI-VUL-007: Locked Deposit Funds 17
4.1.8 V-PRI-VUL-008: User liquidation difficulty 19
4.1.9 V-PRI-VUL-009: Unintentional truncation in tokensToDenom calculation 21
4.1.10 V-PRI-VUL-010: No validation on liquidation relationships 22
4.1.11 V-PRI-VUL-011: Checks recommendations for CRM 23
4.1.12 V-PRI-VUL-012: Checks recommendations for IRM 25
4.1.13 V-PRI-VUL-013: Checks recommendations for PrimeOracle 26
4.1.14 V-PRI-VUL-014: Optimization: Use battle-tested OpenZeppelin imple-

mentation . 28
4.1.15 V-PRI-VUL-015: MasterState.sol exceeding contract size limit 29
4.1.16 V-PRI-VUL-016: preProcessingValidation and flagMsgValidated should

be combined . 30
4.1.17 V-PRI-VUL-017: Axelar implementations should extend Axelar interfaces 31

Veridise Audit Report: Prime © 2022 Veridise Inc.

Executive Summary 1
From September 1 to September 21, Prime engaged Veridise to review the security of their Prime
Protocol. The review covered the on-chain contracts that implement the protocol logic. Veridise
conducted the assessment over 9 person-weeks, with 3 engineers reviewing code over 3 weeks
from commit 706efa4 of the CrossChainContracts repository. The auditing strategy involved
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Summary of issues detected. The audit uncovered 17 issues, 2 of which are assessed to be
of high or critical severity by the Veridise auditors. Specifically, bug V-PRI-VUL-001 can lead
to dropped and corrupted cross-chain messages, while bug V-PRI-VUL-002 allows users to
manipulate exchange rates by resending stale messages. The Veridise auditors also identified
several moderate-severity issues, such as unchecked return values for critical functions (V-
PRI-VUL-003), potentially locked funds (V-PRI-VUL-004, V-PRI-VUL-007) and possible price
instability via unrestricted arbitrage (V-PRI-VUL-006). In addition to these concerns, auditors
also identified a number of other concerns, including several missing input validations (V-
PRI-VUL-010,V-PRI-VUL-011,V-PRI-VUL-012, V-PRI-VUL-013), unintentional truncation leading
to incorrectly rounded values (V-PRI-VUL-009), as well as several code optimizations and
maintainability suggestions (V-PRI-VUL-014, V-PRI-VUL-015, V-PRI-VUL-016, V-PRI-VUL-
017).

Code assessment. The Prime Protocol implements a cross-chain lending-borrowing market.
In particular, Prime Protocol enables users to deposit assets on any chain and receive an
over-collateralized stablecoin loan backed by their entire portfolio of assets across all chains.
Prime Protocol leverage a hub-and-spoke model, where a single master chain communicates
with multiple satellite chains where users can borrow and repay loans. Like most lending
protocols, Prime Protocol enables verified liquidators to pay off the debts of borrowers who
have breached their maitenance margin in exchange for incentive. Prime Protocol relies on
Axelar for secure communication between multiple blockchains and multiple Chainlink price
feeds for stabilizing prices for assets cross-chain.

Prime provided the source code for the Prime Protocol contracts for review. A Typescript-
based test-suite accompanied the source-code with tests written by the developers. These tests
encompass fund deposit and withdrawal, oracle and bridge behavior, debt repayment, position
liquidation, cross-chain message validity, home and satellite chain behaviors, collateral ratio
and interest rate calculation. The test-suite also included a custom fuzzing mechanism built
to further test elements of their protocol. Finally, the client provided extensive documentation
as well as a whitepaper describing the goals of the exchange and intended behavior for the
contracts.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee

Veridise Audit Report: Prime © 2022 Veridise Inc.

CrossChainContracts

2 1 Executive Summary

that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Prime

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Prime Protocol 706efa4 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Aug. 29 - Oct. 7, 2022 Manual & Tools 3 9 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 1 1
Low-Severity Issues 10 9
Warning-Severity Issues 4 2
Informational-Severity Issues 0 0
TOTAL 17 14

Table 2.4: Category Breakdown.

Name Number
Logic Error 3
Locked Funds 4
Maintainability 4
Data Validation 5
Usability 1

Veridise Audit Report: Prime © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Prime Protocol. In our audit, we sought to answer the following questions:

▶ Are transactions between master and satellite chains always safe? Is state synchronicity
maintained?

▶ Can messages be spoofed or replayed by attackers? What are the security guarantees of
Axelar?

▶ Is it possible for a user to manipulate asset prices?
▶ Are admin-only functions restricted properly?
▶ Are users able to properly repay, borrow, and deposit funds?
▶ Are interest rates, incentives, etc. correctly calibrated to incentivize good behavior? Is

decimal precision correctly maintained?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to evaluate how the code
behaves given unexpected inputs. To do this, we identified several code regions of interest
and tested them against hand-written specifications.

Scope. This audit reviewed the on-chain behaviors of the Prime Protocol, including user behaviors
on satellite chains, middle layer communication between satellite chains and the master, as well
as master chain internal behaviors and liquidations. As such, Veridise auditors first reviewed
the provided whitepaper and documentation to understand the desired behavior of the protocol
as a whole. Then, the auditors inspected the provided tests to better understand the desired
behavior of the provided contracts at a more granular level. Finally, auditors began a multi-week
manual audit of the code assisted by both static analyzers and automated testing.

The audit focused on the following components in particular:

▶ Borrowing and lending logic.
▶ Cross-chain message sending and validation.
▶ Interest rates and incentives.

Veridise Audit Report: Prime © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ Liquidation logic.
▶ Master state management and synchronicity of state across chains.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Prime

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-PRI-VUL-001 Incorrect rounding in ECC.roundPtr() High Fixed
V-PRI-VUL-002 Users can manipulate exchange rate High Fixed
V-PRI-VUL-003 masterDeposit() does not check result Medium Fixed
V-PRI-VUL-004 Locked funds due to no-op fallback and receive Low Fixed
V-PRI-VUL-005 onlySrc modifier bypassed if srcAddr is 0 Low Fixed
V-PRI-VUL-006 No restriction on arbitrage amounts Low Acknowledged
V-PRI-VUL-007 Locked deposit funds Low Acknowledged
V-PRI-VUL-008 User liquidation difficulty Low Fixed
V-PRI-VUL-009 Unintentional truncation in tokensToDenom Low Fixed
V-PRI-VUL-010 No validation on liquidation Low Open
V-PRI-VUL-011 Checks recommendations for CRM Low Fixed
V-PRI-VUL-012 Checks recommendations for IRM Low Fixed
V-PRI-VUL-013 Checks recommendations for PrimeOracle Low Fixed
V-PRI-VUL-014 Use OpenZeppelin reentrancy guard Warning Open
V-PRI-VUL-015 MasterState.sol exceeding contract size limit Warning Acknowledged
V-PRI-VUL-016 Merge functions for clarity Warning Fixed
V-PRI-VUL-017 Axelar implementations should extend interfaces Warning Open

Note, for the statuses listed above, we define them as follows:

Fixed Developers acknowledged the issue and added the fix suggested by
Veridise auditors.

Addressed Developers acknowledged the issue and added a different fix than the
fix suggested by Veridise auditors. Veridise auditors verified that the
fix performs as the customer expected.

Acknowledged Developers acknowledged the issue but indicated that it either should be
addressed (or already is) by code outside of the scope of the current
audit or does not need to be addressed for other reasons at this time.
If necessary, developers have forwarded the issue to the team/s
in charge of the relevant code.

Open Developers acknowledged the issue but have not yet addressed it.
Expected Behavior Developers say the issue identified by Veridise auditors is actually the

intended behavior of the code.

Veridise Audit Report: Prime © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

In this section, we describe each uncovered vulnerability in more detail.

4.1.1 V-PRI-VUL-001: Incorrect rounding in ECC.roundPtr()

Severity High Commit 706efa4
Type Logic Error Status Fixed
Files ecc/ECC.sol

Functions roundPtr

Description The roundPtr method computes the value of ptr rounded to the closest multiple of
maxSize.slot . However, the arithmetic for rounding up is incorrect: it should add msze - delta

instead of delta .

1 function roundPtr(

2 bytes32 ptr

3) internal view returns (bytes32 /* ptr */) {

4 assembly {

5 let msze := sload(maxSize.slot)

6 let delta := mod(ptr, msze)

7 if gt(delta, 0) {

8 let halfmsze := div(msze, 2)

9 // round down at half

10 if iszero(gt(delta, halfmsze)) { ptr := sub(ptr, delta) }

11 if gt(delta, halfmsze) { ptr := add(ptr, delta) }

12 }

13 }

14 return ptr;

15 }

Snippet 4.1: Implementation of roundPtr

Impact roundPtr() is intended to calculate a storage slot index that is aligned to multiples
of maxSize slots (which is equal to 8 as of commit fbba7e0), and various functions in the ECC

contract assume that roundPtr() indeed returns a slot index that is aligned. However, the bug
above will cause the indices returned by roundPtr() to not be aligned.

Because the ECC module is in charge of recording, verifying, and resending messages, this error
has significant potential consequences. In particular, this issue could result in (1) an inability to
verify valid messages, (2) existing messages being overwritten or dropped, and (3) sending of
bogus verified messages resulting from overwritten data on misalignment.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 9

Recommendation

▶ In the gt(delta, halfmsze) case, change the assignment to ptr := add(ptr, sub(msze,

delta)) .
▶ Alternatively, the code can be changed so that the pointer is always rounded down.

Probabilistically, the chance of a hash collision occurring when always rounding down is
equal to that when rounding up 50% of the time and rounding down 50% of the time.

Developer Response The developers acknowledged the issue and took our recommendation
to always round the pointer down in commit eceb992.

Veridise Audit Report: Prime © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-PRI-VUL-002: Users can manipulate Exchange Rate

Severity High Commit 706efa4
Type Logic Error Status Fixed
Files master/MasterMessageHandler.sol, ecc/ECC.sol

Functions masterDeposit, masterWithdraw,
_getHypotheticalAccountLiquidity, resendMessage

Description Currently in deposit and withdraw messages, satellites send along the current
exchange rate for a loan asset. The master then uses the reported exchange rate to update the
user’s state on the master chain. In addition, the latest exchange rate is stored in the master state
for later use when calculating a user’s “account liquidity.” While this gives satellites a greater
ability to regulate themselves, it can also be abused by users with the help of ECC.resendMessage
since the master does not check the age of a message.

In particular, users can take advantage of the lack of age checks by “pre-registering” a message.
To do so a user submits a transaction that will send a message on the satellite but will revert on the
master (note, it is also possible to do this by taking advantage of bridge downtimes). A user can
therefore guarantee that the message can be resent without any further validation on the satellite
and accepted again on the master (as a revert on master won’t record the message in its ECC).
Because old messages contain an outdated exchange rate, a malicious user can "pre-register" mes-
sages at a time when the exchange rate is desirable and resend them at a later time to make profit.

1 function withdraw(

2 address route,

3 uint256 withdrawAmount

4) external override payable nonReentrant() {

5 if (withdrawAmount == 0) revert ExpectedWithdrawAmount();

6 if (totalSupply == 0) revert NothingToWithdraw();

7 uint256 exchangeRate = _getExchangeRate();

8 _sendWithdraw(

9 msg.sender,

10 route,

11 withdrawAmount,

12 exchangeRate

13);

14 }

Snippet 4.2: Checks performed on the satellite before sending a withdraw message

Impact There are two potential ways a user can use such an attack: (1) to pre-register
transactions a user would eventually like to take or (2) to manipulate the functionality of the
master state (such as _getHypotheticalAccountLiquidity).

In the first case, a user can pre-register withdraws with desirable (or manipulated) exchange
rates. These withdraws can be registered before the user has even deposited funds in the protocol
since the satellite does not validate the user’s funds before sending a withdraw message. Later

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 11

after the user has deposited funds and would like to withdraw them they can use resendMessage

to perform a withdraw using the beneficial exchange rate.

In the second case, a user can pre-register a deposit or withdraw message specifically to
manipulate the exchange rate. Similar to the previous case, a user would do so by first pre-
registering messages with desirable (or manipulated) exchange rates. Later, a user can use this
message to manipulate an account’s hypothetical account liquidity. For example, a user could
save a message with a good exchange rate to borrow more funds than the real exchange rate
would allow. Alternatively, they could also save a message with a bad exchange rate to liquidate
a user who’s borrow position is still healthy.

Recommendation

▶ Use the timestamp included with resend messages in ECC to avoid resending stale
messages. Checking first to see if a message is too old to send helps prevent users freely
resending a pre-registered message.

Developer Response The developers acknowledged the issue and took our recommendation
in commit eceb992.

Veridise Audit Report: Prime © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-PRI-VUL-003: masterDeposit() does not check result of _enterMarket()

Severity Medium Commit 706efa4
Type Locked Funds Status Fixed
Files master/MasterMessageHandler.sol

Functions masterDeposit

Description Currently, calls to masterDeposit enter the user into a pToken market on a
designated chain via a call to _enterMarket. As shown in the snippet below, the return value of
_enterMarket is not checked when called in masterDeposit.

1 if (collateralBalances[chainId][params.user][params.pToken] == 0) {

2 _enterMarket(params.pToken, chainId, params.user);

3

4 emit NewCollateralBalance(params.user, chainId, params.pToken);

5 }

Snippet 4.3: Location in masterDeposit() where _enterMarket() is checked

The _enterMarket function has a return value indicating whether or not the market was entered
successfully – failure to enter the market can occur if one attempts to enter an unlisted market.
Part of the _enterMarket function is shown below.

1 if (accountMembership[borrower][chainId][pToken]) {

2 return true;

3 }

4

5 if (!markets[chainId][pToken].isListed) {

6 return false;

7 }

Snippet 4.4: Checks in _enterMarket that will be ignored due to this issue

Impact Failing to check this return value means that a deposit may incorrectly continue even
if a user is attempting to enter an unlisted market. This could cause issues down the line when
the user attempts to withdraw their deposit, as calls to _exitMarket may fail as the market was
never correctly entered.

Recommendation Check the return result of _enterMarket and revert if the market is not
successfully entered.

Developer Response The developers acknowledged the issue and took our recommendation
in commit eceb992.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 13

4.1.4 V-PRI-VUL-004: Locked funds due to no-op fallback and receive

Severity Low Commit 706efa4
Type Locked Funds Status Fixed
Files middleLayer/MiddleLayer.sol, loanAgent/LoanAgent.sol,

loanAsset/LoanAsset.sol, pToken/PTokenBase.sol
Functions fallback, receive

Description A number of contracts can receive ETH with no way for it to be retrieved from
the contract. In particular, the following functions can lead to contracts receiving ETH which
cannot be retrieved:

▶ The payable MiddleLayer.msend() method
▶ The LoanAgent._sendRepay, LoanAgent._sendBorrow internal methods invoked by external

payable methods
▶ The LoanAsset._sendTokensToChain internal method invoked by external payable methods
▶ The PTokenMessageHandler._sendDeposit, PTokenMessageHandler._sendWithdraw internal

methods invoked by external payable methods.

Impact Users could accidentally send funds to contracts which can never be retrieved, even by
the contract owners.

Recommendation Remove the fallback() and receive() methods.

Developer Response The developers acknowledged the issue and took our recommendation
in commit eceb992.

Veridise Audit Report: Prime © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-PRI-VUL-005: Can bypass onlySrc modifier if srcAddr is 0

Severity Low Commit 706efa4
Type Data Validation Status Fixed
Files middleLayer/routes/axelar/AxelarModifiers.sol

Functions onlySrc

Description The middle layer validates the origin of a message by checking it against a set
of known contract addresses on other blockchains. Due to how mappings are implemented,
however, if srcAddr is ever address(0) , an attacker can bypass this check.

1 modifier onlySrc(uint256 srcChain, address srcAddr) {

2 if (srcContracts[srcChain] != address(srcAddr)) revert OnlyAuth();

3 _;

4 }

Snippet 4.5: The onlySrc implementation

Impact If a user is able to bypass this check, they would be able to process an arbitrary message
on the message or satellite.

Recommendation While there should be no way for srcAddr to be zero if Axelar works as
intended, the developers should be defensive in case a bug could be exploited in Axelar. Adding
a zero address check would reduce the attack surface.

Developer Response The developers acknowledged the issue and took our recommendation
in commit eceb992.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 15

4.1.6 V-PRI-VUL-006: No Restrictions on arbitrage amounts

Severity Low Commit 706efa4
Type Logic Error Status Acknowledged
Files treasry/Treasury.sol

Functions mintLoanAsset, burnLoanAsset

Description To maintain the stability of the Prime stablecoin (PUSD), the developers allow
arbitrageurs to buy from and sell to the treasury directly to gain yields. Essentially, if the price
of PUSD is too high, an arbitrageur can purchase PUSD from the treasury with alternative
stablecoins. Similarly if the price of the prime stablecoin is too low, an arbitrageur can sell
PUSD to the treasury in return for alternative stablecoins. While this can allow well-behaved
users to stabilize PUSD’s price, we are concerned that it could provide malicious users an
avenue for profit since there is no restriction on the size of the purchase or sale. As such, a user
may intentionally attempt to destabilize the price of PUSD so they may take advantage of the
difference between an exchange’s price and that of the treasury.

1 function mintLoanAsset(

2 address payable loanAsset,

3 address tradeAsset,

4 uint256 tradeAmount

5) external payable override /* nonReentrant() */ returns (bool) {

6 ...

7

8 uint256 exchangeAmount = (tradeAmount * 10**loanAssetDecimals) / 10**
tradeAssetDecimals;

9 uint256 mintAmount = exchangeAmount * 10**FACTOR_DECIMALS / localLoanAsset[

loanAsset][tradeAsset].mintPrice;

10

11 assetReserves[tradeAsset] += tradeAmount;

12 if (tradeAsset != address(0) && !_tradeAsset.transferFrom(msg.sender, address

(this), tradeAmount)) revert TransferFailed(msg.sender, address(this));

13

14 _loanAsset.mint(msg.sender, mintAmount);

15

16 return true;

17 }

Snippet 4.6: The treasury mint function that can mint an arbitrary number of tokens

As it stands, the treasury allows users to buy or sell arbitrary amounts of PUSD for a set price
(mintPrice/burnPrice respectively) at the treasury. In addition, the treasury contract currently
restricts these prices so they are between 1 and 1.05 so a user may always buy or sell at the
treasury.

Veridise Audit Report: Prime © 2022 Veridise Inc.

16 4 Vulnerability Report

1 function modifyTradeAsset(

2 address _localLoanAsset,

3 address _tradeAsset,

4 uint256 _mintPrice,

5 uint256 _burnPrice

6) external onlyAdmin() {

7 unchecked {

8 /* Min: 1e8 */

9 /* Max: 105e6 */

10 if (_mintPrice - 1e8 > 5e6) revert ParamOutOfBounds();

11 if (_burnPrice - 1e8 > 5e6) revert ParamOutOfBounds();

12 }

13 if (_mintPrice != 0) localLoanAsset[_localLoanAsset][_tradeAsset].mintPrice =
_mintPrice;

14 if (_burnPrice != 0) localLoanAsset[_localLoanAsset][_tradeAsset].burnPrice =
_burnPrice;

15 }

Snippet 4.7: Function that allows an asset to change the mint/burn price

Impact Since few restrictions exist on an arbitrageur, we are concerned that the treasury
stability functions could be used to destabilize the price of PUSD for some gain. As of now,
all attacks identified by Veridise engineers involve either (1) an attacker who is willing to lose
a significant amount of money to destabilize PUSD or (2) a third party exchange containing
major, exploitable flaws. Thus, we indicate this issue as low severity, nonetheless but strongly
encourage the developers to protect against potential price instability.

Recommendation Restrict the number of tokens that can be minted or burnt either at once or
over some period of time to be an adjustable percentage of the total supply.

Developer Response At this time, because Veridise engineers are unable to find a profitable
attack and unlimited mints and burns may be desirable in some select scenarios, the Prime
developers have opted not to address this issue.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 17

4.1.7 V-PRI-VUL-007: Locked Deposit Funds

Severity Low Commit 706efa4
Type Locked Funds Status Acknowledged
Files PTokenBase.sol

Functions deposit

Description Upon a deposit on the satellite, a PToken will perform some validation, collect
the deposited funds, send a message to master and then mint the requested PTokens for the
user as shown below.

1 function deposit(

2 address route,

3 uint256 amount

4) external virtual override payable {

5 if (isPaused) revert MarketIsPaused();

6 if (amount == 0) revert ExpectedDepositAmount();

7 uint256 exchangeRate = _getExchangeRate();

8 uint256 actualTransferAmount = _doTransferIn(underlying, amount);

9 uint256 actualDepositAmount = (actualTransferAmount * 10**EXCHANGE_RATE_DECIMALS)

/ exchangeRate;

10 _sendDeposit(

11 route,

12 underlying == address(0)

13 ? msg.value - actualDepositAmount

14 : msg.value,

15 actualDepositAmount,

16 exchangeRate

17);

18 totalSupply += actualDepositAmount;

19 accountTokens[msg.sender] += actualDepositAmount;

20 }

Snippet 4.8: The deposit procedure for a PToken

Even though the PTokens have been minted, the given request may still be rejected on the
master, namely if the target is paused on the master. In addition, as indicated by this issue we
believe there may be further reasons for a rejection added in the future.

1 function masterDeposit(

2 IHelper.MDeposit memory params,

3 uint256 chainId

4) external payable onlyMid() {

5 // Do not accept new deposits on a paused market

6 if (markets[chainId][params.pToken].isPaused) revert MarketIsPaused();

7 ...

8 }

Snippet 4.9: Location where the master may reject a deposit message

Veridise Audit Report: Prime © 2022 Veridise Inc.

18 4 Vulnerability Report

Impact If this were to occur, a user may not be able to withdraw their funds from the PToken
due to the fact that the deposit will not be recorded in the master state. Therefore, upon a
withdrawal from the perspective of the master state these funds will not exist. To rectify this
situation, the user must resend their message later once depositing is permitted (if it ever is).
However, since a user will have received their PTokens when submitting the transaction it is
unlikely they will know that this has occurred.

Recommendation In the current version of the protocol, the developers must ensure that the
isPaused flags are consistent on the master and satellite. It is, however, unclear to us if both
flags are necessary as only using a single paused flag will be less error prone. In addition, if the
master may reject a deposit it might be necessary to award PTokens asynchronously similar to
how a PToken performs a withdraw.

Developer Feedback Issues such as this are going to be addressed in the front-end. Essentially
the front-end will monitor the events emitted from the satellite and master to find cases where
an event fails on master and will prompt the user to take steps to address the issue (in cases
where that’s necessary).

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 19

4.1.8 V-PRI-VUL-008: User liquidation difficulty

Severity Low Commit 706efa4
Type Usability Status Fixed
Files master/MasterInternals.sol

Functions _liquidateBorrow

Description When performing a liquidation, the protocol takes a percentage of the funds
that are liquidated as a fee charged to the liquidator by subtracting it from the repayAmount. In
addition, the protocol caps the given repayAmount at the size of the borrow being liquidated. A
borrow can therefore only be fully liquidated by a liquidator if the protocol’s fee is 0; otherwise,
fully liquidating a borrow will likely require multiple liquidations.

1 function _liquidateBorrow(

2 address pToken, address borrower, uint256 chainId,

3 uint256 repayAmount, address route, address masterLoanMarket

4) internal virtual override returns (bool) {

5 ...

6

7 /* We fetch the amount the borrower owes, with accumulated interest */

8 uint256 accountBorrows = _borrowBalanceStored(

9 borrower,

10 masterLoanMarket

11);

12

13 ...

14

15 if (

16 accountBorrows < repayAmount

17) revert RepayTooMuch(repayAmount, accountBorrows);

18

19 ...

20

21 uint256 protocolSeizeShareAmount = (repayAmount * markets[chainId][pToken].

protocolSeizeShare) / (10**FACTOR_DECIMALS);

22

23 ...

24

25 accountLoanMarketBorrows[borrower][masterLoanMarket].principal +=

protocolSeizeShareAmount;

26 loanMarkets[masterLoanMarket].totalBorrows += protocolSeizeShareAmount;

27

28 ...

29 }

Snippet 4.10: Function _liquidateBorrow

Impact Once the borrow becomes small it may be ignored by liquidators as a liquidation will
not yield as many profits. This could result in the protocol maintaining a number of small loans
that are not properly collateralized.

Veridise Audit Report: Prime © 2022 Veridise Inc.

20 4 Vulnerability Report

Developer Response The developers acknowledged the issue and took our recommendation
in commit e732bf4.

Recommendation Enable a liquidator to repay the full debt of the borrower plus the protocol
fee so that a borrower can be completely liquidated in a single transaction.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 21

4.1.9 V-PRI-VUL-009: Unintentional truncation in tokensToDenom calculation

Severity Low Commit 706efa4
Type Data Validation Status Fixed
Files MasterInternals.sol

Functions _getHypotheticalAccountLiquidity

Description In the tokensToDenom calculation in _getHypotheticalAccountLiquidity(), an
unintentional truncation currently causes the tokensToDenom value to be incorrectly calculated.

1 tokensToDenom = markets[_chainId][_pToken].exchangeRate * collateralFactor / 10**
factorDecimals * oraclePrice / 10**oracleDecimals;

Snippet 4.11: 10**factorDecimals was placed before oraclePrice, resulting in a truncation

Impact This causes collateralValue , sumCollateral, and sumBorrowPlusEffects to be cal-
culated potentially incorrectly, with _getHypotheticalAccountLiquidity being a component
of the protocol’s borrow, withdrawal and liquidation behavior (see MasterInternals.sol and
MasterMessageHandler.sol).

Recommendation Adjust the order of operations to perform division after multiplication.

Developer Response The developers acknowledged the issue and took our recommendation
in commit 7313d45.

Veridise Audit Report: Prime © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.10 V-PRI-VUL-010: No validation on liquidation relationships

Severity Low Commit 706efa4
Type Data Validation Status Open
Files MasterInternals.sol

Functions _getHypotheticalAccountLiquidity

Description The protocol currently has four correlated values that aid in a liquidation:
CRMRouterStorage.maintenanceLtvRatios, CRMRouterStorage.absMaxLtvRatios, MasterStorage.Market
.protocolSeizeShare and MasterStorage.Market.liquidityIncentive. First, to ensure that a user
cannot be liquidated immediately after they borrow funds, the following relationship must
hold:

1 1 > maintenanceLtvRatios[cid][collateral] >= absMaxLtvRatios[cid][collateral] > 0

In addition, to ensure that a user has enough collateral to ensure their loan can be fully liquidated
with the liquidation bonus, the following relationship must hold:

1 1 / (1 + markets[cid][collateral].liquidationIncentive) > maintenanceLtvRatios[cid][

collateral]

Finally, to ensure that a liquidation is sufficiently incentivized the following relationship must
hold:

1 markets[cid][collateral].liquidationIncentive > markets[cid][collateral].

protocolSeizeShare >= 0

Currently these relationships are not enforced in the protocol, which could result in an admin
error.

Impact Particularly in the second case, an admin error could have drastic consequences for
the protocol as technically the borrow would not be properly collateralized with respect to
the incentives provided by the protocol. A liquidator could therefore purchase all of a user’s
collateral and leave the liquidated user with a borrow balance. Since the liquidated user has
no collateral at this point liquidators don’t have an incentive to liquidate the remainder of the
borrow and the borrower doesn’t have an incentive to repay their loan.

Recommendation Enforce the given relationships in code to remove the possibility of an
admin error.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 23

4.1.11 V-PRI-VUL-011: Checks recommendations for CRM

Severity Low Commit 706efa4
Type Data Validation Status Fixed
Files CRMAdmin.sol, CRM.sol

Functions setAbsMaxLtvRatio, getLoanMarketPremium

Description The protocol currently has a few key functions in CRM related contracts that
currently lack data validation in key spots. For setAbsMaxLtvRatio, a check should be added to
ensure it is not accidentally set to 0.

1 function setAbsMaxLtvRatio(

2 uint256 chainId,

3 address asset,

4 uint256 maxLtvRatio

5) external onlyAdmin() {

6 absMaxLtvRatios[chainId][asset] = maxLtvRatio;

7 emit AssetLtvRatioUpdated(chainId, asset, maxLtvRatio);

Snippet 4.12: setAbsMaxLtvRatio

Veridise Audit Report: Prime © 2022 Veridise Inc.

24 4 Vulnerability Report

In getLoanMarketPremium, ratio returned by oracle is assumed to be 1e18 here, but there is no
validation that this is actually the case.

1 function getLoanMarketPremium(

2 address loanMarketOverlying,

3 uint256 loanMarketUnderlyingChainId,

4 address loanMarketUnderlying

5) external view override returns (uint256, uint8) {

6 (uint256 ratio, uint8 ratioDecimals) = primeOracle.getBorrowAssetExchangeRate

(

7 loanMarketOverlying,

8 loanMarketUnderlyingChainId,

9 loanMarketUnderlying

10);

11

12 if (ratioDecimals < 4) revert InvalidPrecision();

13

14 uint256 basePremium = 10**FACTOR_DECIMALS;

15 int256 ratioDelta = int256(ratio) - int256(ratioFloor);

16

17 if (ratio >= ratioCeiling) {

18 return (basePremium, FACTOR_DECIMALS);

19 } else if (ratioDelta <= int256(10**(ratioDecimals - 4))) { // INVARIANT:

Premium should never be > 100x base premium

20 return (100 * basePremium, FACTOR_DECIMALS);

21 }

22 return ((ratioCeiling - ratioFloor) * basePremium / uint256(ratioDelta),

FACTOR_DECIMALS);

23 }

Snippet 4.13: getLoanMarketPremium function

Impact If not checked, incorrect LTV ratios and loan market premiums can be applied to the
protocol which could skew the incentive system towards bad behaviors.

Recommendation Implement checks as described above.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 25

4.1.12 V-PRI-VUL-012: Checks recommendations for IRM

Severity Low Commit 706efa4
Type Data Validation Status Fixed
Files IRM.sol

Functions setBorrowRate

Description Similar to V-PRI-VUL-011, ratio in setBorrowRate is assumed to be 1e18 here, but
as a return value from the oracle, there should be validation that the ratio is returned as a 1e18
value. An enforcement on this assumption is recommended for data accuracy.

1 function setBorrowRate(

2 address loanMarketOverlying,

3 uint256 loanMarketUnderlyingChainId,

4 address loanMarketUnderlying

5) external override onlyRouter() returns (uint256) {

6 ...

7 (uint256 ratio,) = primeOracle.getBorrowAssetExchangeRate(

8 loanMarketOverlying,

9 loanMarketUnderlyingChainId,

10 loanMarketUnderlying

11);

12 uint256 borrowInterestRateBaseline = borrowInterestRateBase;

13 // increase interest above stable range

14 if (ratio > upperTargetRatio)

15 ...

16 }

Snippet 4.14: The return value itself from getBorrowAssetExchangeRate is not checked here

Impact Similar to V-PRI-VUL-011, if these checks are violated, the borrow interest rate could
be incorrectly assigned incentivizing undesired behavior from users.

Recommendation Implement checks as described above.

Veridise Audit Report: Prime © 2022 Veridise Inc.

26 4 Vulnerability Report

4.1.13 V-PRI-VUL-013: Checks recommendations for PrimeOracle

Severity Low Commit 706efa4
Type Data Validation Status Fixed
Files PrimeOracle.sol

Functions getUnderlyingPriceBorroww, getBorrowAssetExchangeRate

In getUnderlyingPriceBorrow, the chainID and pUSDAddress are not verified. This assumes
that the same pUSDAddress can be obtained on every satellite chain.

1 function getUnderlyingPriceBorrow(

2 uint256 chainId,

3 address loanMarketUnderlying

4) external view override returns (uint256, uint8) {

5

6 if (loanMarketUnderlying == pusdAddress) {

7 uint8 pusdDecimals = ERC20(pusdAddress).decimals();

8 return (10**pusdDecimals, pusdDecimals);

9 } else {

10 return _getAssetPrice(chainId, loanMarketUnderlying);

11 }

12 }

Snippet 4.15: getUnderlyingPriceBorrow function

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 27

An additional check for revert should be implemented here to ensure that the secondary feed
does not return 0 and cause logic errors in liquidation.

1 function getBorrowAssetExchangeRate(

2 address loanMarketOverlying,

3 uint256 loanMarketUnderlyingChainId,

4 address loanMarketUnderlying

5) external view override returns (uint256 ratio, uint8 decimals) {

6 if (loanMarketUnderlying == pusdAddress) {

7 return _getAssetPrice(block.chainid, loanMarketUnderlying);

8 }

9

10 IPrimeOracleGetter primaryFeed = primaryFeeds[loanMarketUnderlyingChainId][

loanMarketUnderlying];

11 if (address(primaryFeed) == address(0)) revert AddressExpected();

12 (ratio, decimals) = primaryFeed.getAssetRatio(loanMarketOverlying,

loanMarketUnderlying, loanMarketUnderlyingChainId);

13 if (ratio == 0) {

14 IPrimeOracleGetter secondaryFeed = primaryFeeds[

loanMarketUnderlyingChainId][loanMarketUnderlying];

15 if(address(secondaryFeed) == address(0)) revert AddressExpected();

16 (ratio, decimals) = secondaryFeed.getAssetRatio(loanMarketOverlying,

loanMarketUnderlying, loanMarketUnderlyingChainId);

17 }

18 }

Snippet 4.16: Secondary price feed could return 0 from function without revert.

Impact Checks on return values from oracles can, for example, prevent (1) the loan market
premium to spike here and (2) cause the borrowInterestRatePerBlock to reach its maximum
here.

Recommendation Track and check the pusdAddress for each satellite chain and make sure
that in getUnderlyingPriceBorrow the loanMarketUnderlying is equal to this address. Also add
revert in case where second price feed returns 0 in getBorrowAssetExchangeRate.

Veridise Audit Report: Prime © 2022 Veridise Inc.

https://github.com/Prime-Protocol/CrossChainContracts/blob/ee0a5c16183cf55699d2e55353db33a431af63bc/contracts/master/crm/CRM.sol#L47
https://github.com/Prime-Protocol/CrossChainContracts/blob/ee0a5c16183cf55699d2e55353db33a431af63bc/contracts/master/irm/IRM.sol#L77

28 4 Vulnerability Report

4.1.14 V-PRI-VUL-014: Optimization: Use battle-tested OpenZeppelin
implementation

Severity Warning Commit 706efa4
Type Maintainability Status Open
Files CommonModifiers.sol

Functions modifier nonReentrant

Description Currently, the protocol uses its own implementation of OpenZeppelin’s Reen-
trancyguard. We recommend using the more gas-optimized and battle-tested OpenZeppelin
implementation directly for better maintainability.

Impact Gas optimization

Recommendation Use OpenZeppelin’s Reentrancy Guard.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 29

4.1.15 V-PRI-VUL-015: MasterState.sol exceeding contract size limit

Severity Warning Commit fbba7e0
Type Maintainability Status Acknowledged
Files master/MasterState.sol

Functions N/A

Description A compilation warning that impacts mainnet deployment. Contracts may en-
counter deployment failures since it exceeds the size limit.

Recommendation Reduce contract size, or split the contract logic up into smaller contracts.

Veridise Audit Report: Prime © 2022 Veridise Inc.

30 4 Vulnerability Report

4.1.16 V-PRI-VUL-016: preProcessingValidation and flagMsgValidated should be
combined

Severity Warning Commit 706efa4
Type Maintainability Status Fixed
Files ecc/ECC.sol

Functions preProcessingValidation, flagMsgValidated

Description Currently two functions are used to pre-process a received message, preProcessing
Validation and flagMsgValidated . However, since the safety of flagMsgValidated relies on
preProcessingValidation occurring beforehand, the developer should consider combining these
two functions.

Impact If in the future if flagMsgValidatedwas called without first calling preProcessingValidation

the protocol could accept duplicate messages sent via resendMessage .

Recommendation Combine the two functions as mentioned.

Developer Response The developers acknowledged the issue and took our recommendation
in commit eceb992.

© 2022 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Bugs 31

4.1.17 V-PRI-VUL-017: Axelar implementations should extend Axelar interfaces

Severity Warning Commit 706efa4
Type Maintainability Status Open
Files middleLayer/routes/axelar/AxelarExecutable.sol

Functions N/A

Description To ensure the implementation of AxelarExecutable matches the interface expected
by Axelar, the developers should consider importing the version provided by Axelar rather than
copying it.

Impact This ensures that the code is maintainable and that the accurate interface of Axelar is
used to prevent any message-passing errors.

Recommendation Import the version of AxelarExecutable created by Axelar in production.

Veridise Audit Report: Prime © 2022 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-PRI-VUL-001: Incorrect rounding in ECC.roundPtr()
	V-PRI-VUL-002: Users can manipulate Exchange Rate
	V-PRI-VUL-003: masterDeposit() does not check result of _enterMarket()
	V-PRI-VUL-004: Locked funds due to no-op fallback and receive
	V-PRI-VUL-005: Can bypass onlySrc modifier if srcAddr is 0
	V-PRI-VUL-006: No Restrictions on arbitrage amounts
	V-PRI-VUL-007: Locked Deposit Funds
	V-PRI-VUL-008: User liquidation difficulty
	V-PRI-VUL-009: Unintentional truncation in tokensToDenom calculation
	V-PRI-VUL-010: No validation on liquidation relationships
	V-PRI-VUL-011: Checks recommendations for CRM
	V-PRI-VUL-012: Checks recommendations for IRM
	V-PRI-VUL-013: Checks recommendations for PrimeOracle
	V-PRI-VUL-014: Optimization: Use battle-tested OpenZeppelin implementation
	V-PRI-VUL-015: MasterState.sol exceeding contract size limit
	V-PRI-VUL-016: preProcessingValidation and flagMsgValidated should be combined
	V-PRI-VUL-017: Axelar implementations should extend Axelar interfaces

